In recent years, scientists have begun to recognize that seemingly isolated rocks beneath the seafloor are a haven for microbial life. Biological activity in this subseafloor realm likely impacts ocean chemistry and the ocean’s critical capacity to store carbon and maintain the planet’s habitability. Our understanding of this activity, currently is in its infancy, will substantially expand thanks to the next Falkor mission.
On September 22, Falkor departed Victoria, British Columbia with the ROPOS remotely operated vehicle, headed to the underwater volcano called Axial Seamount, about 575 kilometers to the southwest. There, a team began an unprecedented study of the microbes and viruses that live within the rocky layers beneath the seafloor.
Julie Huber at the Marine Biological Laboratory led the new collaboration with Schmidt Ocean Institute, which also involves Huber’s colleagues from University of Washington, NOAA Pacific Marine Environmental Laboratory, University of Massachusetts, Amherst, and J. Craig Venter Institute.
Data & Publications
Shipboard chemistry analyses, and microbial and viral counts can be found at the Marine Biological Labratory (MBL) Josephine Bay Paul Center.
ROV ROPOS Dives can be found on You Tube.
Sampling sites, Microbial eukaryotic diversity, and thermophile abundance are being archived at BCO-DMO.
The resulting shipboard-collected dataset is being archived at Rolling Deck to Repository.
Axial Viral Community Raw Sequences are archived at NCBI.
Metagenomes and Metatranscriptomes from the diffuse hydrotherma vents of Axial Seamount are archived at the European Nucleotide Archive.
RNA-based stable isotope probing metatranscriptomics from Axial Seamount Marker 113 are archived at the European Nucleotide Archive.
The project page includes Code and sequence analyses available on Github!
- Fortunao, Carolina and Julie Huber (2016). Coupled RNA-SIP and Metatranscriptomics of Active Chemolithoautotrophic Communities at a Deep-sea Hydrothermal Vent, The ISME Journal, pp 1-14. doi: 10.1038/ismej.2015.258 [This publication is OPEN ACCESS.]
- Cruise Report: Axial Seamount
- Fortunato, C.S. and coauthors. (2014) Using RNA-SIP and metatranscriptomics to determine the active autotrophic subseafloor microbial communities at Axial Seamount. International Society for Microbial Ecology 15th International Symposium, Seoul, South Korea.
- Holden, J.F. and coauthors. (2014). Growth and methane production by high-temperature methanogens in hydrothermal regions of the subseafloor. Korean Institute for Ocean Science and Technology, Ansan, South Korea & Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA & Program in Atmospheres, Oceans, and Climate, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Holden, J.F. and coauthors. (2014). Reactive transport model of growth and methane production by high-temperature methanogens in hydrothermal regions of the subseafloor. Ninth International Symposium on Subsurface Microbiology, Pacific Grove, CA, USA.
- Huber, J.A. and coauthors. (2014). Application of RNA Stable Isotope Probing (SIP) to link community activity with microorganisms responsible for autotrophy in the subseafloor at Axial Seamount. AGU Fall Meeting, San Francisco, CA, USA.
- Huber, Julie, Christopher K. Algar, Lisa Zeigler Allen, David A. Butterfield, Caroline S. Fortunato, James F. Holden, Benjamin I. Larson, Giora K. Proskurowski, Lucy C. Stewart, Begum C. Topҫuoḡlu, and Joseph J. Vallino. 2014, Investigating Microbes, Viruses, and Carbon Acroos Thermal and Chemical Gradients in the Subseafloor at Axial Seamount. Poster Presentation at Gordon Research Conference on Marine Microbiology, June 22-27, 2015, Waltham, MA, USA.
- Huber, J., C. K. Algar, L. Zeigler Allen, D. A. Butterfield, C.S. Fortunato, et al. (2014). Investigating Microbes, Viruses, and Carbon Across Thermal and Chemical Gradients in the Subseafloor at Axial Seamount. Poster Presentation at Gordon Research Conference on Marine Microbiology, Waltham, MA, USA.
- Topçuoğlu B., Stewart L., Morrison H., Butterfield D., Huber J., and Holden, J. (2016). Hydrogen Limitation and Syntrophic Growth among Natural Assemblages of Thermophilic Methanogens at Deep-sea Hydrothermal Vents. Front. Microbiol. 7:1240. doi: 10.3389/fmicb.2016.01240. [This publication is OPEN ACCESS distributed under the terms of the Creative Commons Attribution License (CC BY)].
- Fortunato, C.F., Butterfield, D.A., Larson, B., Algar, C.K, Vallino, J.J., and J.A. Huber. (2016). Microbial Metabolic Potential and Gene Expression Patterns across Geochemical Gradients in the Deep Ocean. Oral Presentation, International Society for Microbial Ecology Meeting, Montreal, CAN.
- Fortunato, C., Larson, B., Butterfield, D., and J. Huber. (2017). Spatially Distinct, Temporally Stable Microbial Populations Mediate Biogeochemical Cycling At and Below the Seafloor in Hydrothermal Vent Fluids. Environmental Microbiology, doi: 10.1111/1462-2920.14011. [This article has been published as OPEN ACCESS].
- Stewart, L., Algar, C., Fortunato, C., Larson, B., Vallino, J., Huber, J., Butterfield, D., and J. Holden. (2019). Fluid geochemistry, local hydrology, and metabolic activity define methanogen community size and composition in deep-sea hydrothermal vents. The ISME Journal, doi: 10.1038/s41396-019-0382-3.
- Moulana, A., Anderson, R., Fortunato, C., and Huber, J. (2020). Selection is a Significant Driver of a Gene Gain and Loss in the Pangenome of the Bacterial Genus Sulfurovum in Geographically Distinct Deep-sea Hydrothermal Vents. mSystems, 5(2) e00673-19; doi: 10.1128/mSystems.00673-19. [This article is published as OPEN ACCESS].
- Thomas, E., Anderson, R., Li, V., Rogan, L., and Huber, J. (2021). Diverse Viruses in Deep-sea Hydrothermal Vent Fluids Have Restricted Dispersal across Ocean Basins. Geomicrobiology 6(3), doi: 10.1128/mSystems.00068-21. [This article is published as OPEN ACCESS].
- Fortunato, C., Butterfield, D., Larson, B., Lawrence-Slavas, N., Algar, C., Zeigler Allen, L., et. al. (2021). Seafloor Incubation Experiment with Deep-sea Hydrothermal Vent Fluid Reveals Effect of Pressure adn Lag Time on Autotrophic Microbial Communities. Microbial Ecology, 87(9), doi: 10.1128/AEM.00078-21. [This article is published as OPEN ACCESS].
- Hu, S., Smith, A., Anderson, R., Sylva, S., Setzer, M., Steadmon, M., et al. (2022). Globally-distributed Microbial Eukaryotes Exhibit Endemism at Deep-sea Hydrothermal vents. Molecular Ecology, doi: 10.1111/med.16745.
- Kubik, B., and Holden, J. (2024). Non-thermodynamic factors affect competition between thermophilic chemolithoautotrophs from deep-sea hydrothermal vents. Applied and Env. Microbiology, doi: 10.1128/aem.00292-24. [This article has been published as OPEN ACCESS].