Illuminating Biodiversity of the Ningaloo Canyons
Very few deep sea areas both in and outside of Australia have been well-sampled over large spatial and temporal scales, and a large number of species still remain undiscovered and unnamed.
Very few deep sea areas both in and outside of Australia have been well-sampled over large spatial and temporal scales, and a large number of species still remain undiscovered and unnamed.
Rising water temperatures and increasing carbon dioxide concentrations remain among the greatest threats to ocean ecosystems globally. This warming trend and associated ocean acidification poses a unique threat to species that use calcium carbonate to build their shells or skeletons, such as corals.
This expedition will feature exploration of the Emperor Seamount Chain while researching biodiversity and its drivers. Using currents, mapping, and radio isotopes to track water masses – as well as genetic sampling of corals – the team will determine the driving force behind coral distribution in this region.
This expedition will feature exploration of the Emperor Seamount Chain while researching biodiversity and its drivers. Using currents, mapping, and radio isotopes to track water masses – as well as genetic sampling of corals – the team will determine the driving force behind coral distribution in this region.
This expedition will feature exploration of the Emperor Seamount Chain while researching biodiversity and its drivers. Using currents, mapping, and radio isotopes to track water masses – as well as genetic sampling of corals – the team will determine the driving force behind coral distribution in this region.
This expedition will feature exploration of the Emperor Seamount Chain while researching biodiversity and its drivers. Using currents, mapping, and radio isotopes to track water masses – as well as genetic sampling of corals – the team will determine the driving force behind coral distribution in this region.
This expedition will feature exploration of the Emperor Seamount Chain while researching biodiversity and its drivers. Using currents, mapping, and radio isotopes to track water masses – as well as genetic sampling of corals – the team will determine the driving force behind coral distribution in this region.
This expedition will feature exploration of the Emperor Seamount Chain while researching biodiversity and its drivers. Using currents, mapping, and radio isotopes to track water masses – as well as genetic sampling of corals – the team will determine the driving force behind coral distribution in this region.
Methane is a more potent greenhouse gas than carbon dioxide, but exists at far lower concentrations in the atmosphere. Many think of methane as a free-floating gas so it can be a surprise to learn that nearly one-fifth of the Earth’s methane is stored beneath the ocean’s waters in marine sediments in the form of gas hydrate.
The Gulf of California is a young ocean undergoing changes including active seafloor spreading, early rifting, and large-scale hydrothermal activity. The rare combination of geological dynamics present in the Gulf of California makes it an ideal place to advance our understanding of deep ocean hydrothermal ecosystems.