The Great Australian Deep-Sea Coral and Canyon Adventure

This expedition will feature exploration of the Emperor Seamount Chain while researching biodiversity and its drivers. Using currents, mapping, and radio isotopes to track water masses – as well as genetic sampling of corals – the team will determine the driving force behind coral distribution in this region.

Mapping The Gaps

This expedition will feature exploration of the Emperor Seamount Chain while researching biodiversity and its drivers. Using currents, mapping, and radio isotopes to track water masses – as well as genetic sampling of corals – the team will determine the driving force behind coral distribution in this region.

Listening for Cryptic Whales Species

This expedition will feature exploration of the Emperor Seamount Chain while researching biodiversity and its drivers. Using currents, mapping, and radio isotopes to track water masses – as well as genetic sampling of corals – the team will determine the driving force behind coral distribution in this region.

Studying the Sea-Surface Microlayer 2

This expedition will feature exploration of the Emperor Seamount Chain while researching biodiversity and its drivers. Using currents, mapping, and radio isotopes to track water masses – as well as genetic sampling of corals – the team will determine the driving force behind coral distribution in this region.

Designing the Future

This expedition will feature exploration of the Emperor Seamount Chain while researching biodiversity and its drivers. Using currents, mapping, and radio isotopes to track water masses – as well as genetic sampling of corals – the team will determine the driving force behind coral distribution in this region.

Necker Ridge: Bridge or Barrier?

This expedition will feature exploration of the Emperor Seamount Chain while researching biodiversity and its drivers. Using currents, mapping, and radio isotopes to track water masses – as well as genetic sampling of corals – the team will determine the driving force behind coral distribution in this region.

Deep Coral Diversity at Emperor Seamount Chain 2019

This expedition will feature exploration of the Emperor Seamount Chain while researching biodiversity and its drivers. Using currents, mapping, and radio isotopes to track water masses – as well as genetic sampling of corals – the team will determine the driving force behind coral distribution in this region.

New Approaches To Autonomous Exploration At The Costa Rican Shelf Break

When NASA conducts planetary expeditions, they operate the vehicles through remote control - a person on Earth sends commands to the vehicle in space. However, even when using communications operating at the speed of light, there is a long gap in time between the transmission of the comand and the robot's reception of it. This … Continued

The Seeping Cascadia Margin

As the R/V Falkor transits from San Diego, California to Astoria, Oregon, Schmidt Ocean Institute will take advantage of this route, collecting valuable mapping data for unsurveyed areas over the active Cascadia Margin while hosting a unique group of Artist-at-Sea and Student Opportunities participants. Over the past two years, researchers from Oregon State University have … Continued

Solving Microbial Mysteries with Autonomous Technology

Phytoplankton form the base of the marine food web. These microscopic, single-celled organisms float in seawater, taking in carbon dioxide and using light energy to make carbohydrates. Like land plants, phytoplankton need other elements and compounds (fertilizer) to perform photosynthesis in order to survive and thrive: Nitrogen is one of these key ingredients for phytoplankton … Continued