Multi-vehicle systems for ocean observation:

are we missing something?

João Tasso de Higão BodseBorges de Sousa

Laboratório de Sistemas e Tecnologias Subaquáticas Faculdade de Engenharia da Universidade do Porto Portugal jtasso@fe.up.pt

Outline

- Laboratory overview
- Vehicle systems
- Approach
- Operations
- Conclusions

LABORATORY OVERVIEW

CONNECTEDUNIVERSITY

LSTS-FEUP

LABORATÓRIO DE SISTEMAS E TECNOLOGIA SUBAQUÁTICAS UNMANNED VEHICLE SYSTEMS FOR A SUSTAINED PRESENCE IN THE OCEAN

Mission: Design and deployment of innovative solutions for coastal oceanographic

System

Vision

Portable/scalable system of interacting autonomous vehicles, operators and satellites

More than motion coordination ③

Dynamic reconfiguration

"Dynamic reconfiguration is a common feature of communicating systems.

The notion of link, not as a fixed part of the system but as a datum that we can manipulate, is essential for understanding such systems.

What is the mathematics of linkage?

The theories of computation are evolving from notions like value, evaluation and function to those of link, interaction and process."

Milner, 1999

Cooperation

- Portugal
 - Portuguese Navy and Air Force
 - Porto harbor
 - IPMA
 - Instituto Superior Técnico
 - DGPM
 - Task group for the extension of the continental shelve
 - Oceanscan MST (spin-off)
- USA
 - US Coast Guard
 - MBARI
 - UC Berkeley
 - Naval Postgraduate School
 - NASA Ames
 - University of Michigan
 - Naval Undersea Warfare Center

- Europe
 - AMOS NTNU (NO)
 - Royal Institute of Technology (SE)
 - Supelec (FR)
 - Naval Undersea Research Center (NATO)
 - National Oceanography Center (UK)
 - Imperial College (UK)
 - Plocan (SP)
 - Delft University (NL)
 - EU/NATO/EDA project partners
 - NOPTILUS FP7
 - SUNRISE FP7
 - NECSAVE EDA
 - NETMAR Interreg
 - SAFEPORT NATO
 - PITVANT PO MOD
 - UReady4OS DG-ECHO
 - BRIDGES H2020
 - ITN Marine UAS Marie Curie
- India
- Brasil

VEHICLE SYSTEMS

Ocean vehicles

Low cost vehicles Commor software/hardware platforms Inter-operability frameworks

Autonomous *≠* Automated

Light AUV (LAUV)

Coms gateways, data loggers, drifters, fish tags

Aerial vehicles

PITVANT project - cooperation with POAF (MOD 2009-15)

- Unmanned vehicle systems
 - 3 ANTEX01 (6.5 m wingspan)
 - 3 ANTEX02E (3.6m wingspan)
 - 8 ANTEX02 (2.4m wingspan)
 - 2 small wingspans
- Stats
 - > 1400 autonomous flights
 - Day / night operations
- Priority: flights over the ocean
 - Surveillance (fishing, polution, etc)
 - Long duration (> 8hours)

UAS

UAV system

Flight time: 1h Range: 10Km (video feed) Hand launched or catapult launch Fully autonomous (soon: no pilot required)

X8 based UAV (1.400 €)

- RC model based platform
- Autopilot
- Onboard computer for autonomy
- WiFi coms (up to 10Km range)
- IP video camera
- HD digital camera or IR camera
- DUNE on-board software
- IMC command and control protocol
- Battery powered

Ground station

- Laptop & antennas
- Neptus command and control software
- IMC command and control protocol
- Multi-vehicle control

0

• Internet enabled

Data vizualization/storage

Applications

Maritime surveillance Aerial photography/mapping Biological studies Search and rescue Fisheries Incident response (floods) Inspection of power lines Ilegal hunting

I. Prodan. S. Olaru. R. Bencatel, J. Borges de Sousa, Cristina Stoica, and Silviu-Iulian Niculescu, "Receding horizon flight control for trajectory tracking of autonomous aerial vehicles", Control Engineering Practice journal, Elsevier, 2013.

APPROACH

Abstract model

Extensible and verifiable control architecture

Uniform software framework with support for interoperability

Abstract model

- System has a pool of vehicles/assets
- System evolves through several steps
- Vehicle/assets execute tasks in each step (vehicle timeline)
- Communications take place at the end of each step for coordination

J. Borges de Sousa, K. H. Johansson, J. Estrela da Silva, and A. Speranzon, "A verified hierarchical control architecture for coordinated multi-vehicle operations", International Journal of Adaptive Control and Signal Processing,, Volume 21, Issue 2-3, Pages 159 – 188, 2005.

Control architecture

- Vehicles deliver computation, communications, power, motion, and sensing primitives
- System level specifications are given on a step transition system
- Each step describes what each vehicle (or ensembles) should be doing

- Motion primitives with guaranteed results or predictable failure model (reach sets)
- Planning for iterated rendezvous (for liveness)
- Layered control architecture
 - Lower layers: low level vehicle control, maneuvers, sensor configuration, communication configuration
 - Higher layers: multi-vehicle controllers that may come and go; time varying control links

Software tool chain

Field tested every other week with ocean and air vehicles

J. Pinto, P. Sousa Dias, R. Martins, J. Fortuna, E. R. B. Marques, and J. Borges de Sousa, "The LSTS tool chain for networked vehicle

systems", Proceedings of the IEEE/MTS OCEANS'13, Bergen, June, 2013. User group: PT, US, NL, NOR, SWE, SP, FR, UK, DE, GR, IN, QT

Layered communications architecture

Operations under intermittent connectivity

Multi-vehicle systems

Multi-vehicle command and control

Onboard deliberation (T-REX / Europa)

- T-REX interacts with onboard DUNE
- Plans generated onboard (TREX runs on secondary CPU)
 - When new objectives are received (plan adaptation)
 - When there is an error executing some objective (replanning)

M. Faria, J. Pinto, F. Py, J. Fortuna, H. Dias, R. Martins, F. Leira, T. Arne Johansen, J. Borges de Sousa, and K. Rajan, "**Coordinating UAVs and AUVs for oceanographic field experiments: challenges and lessons learned**", Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong-Kong, May 31 – June 7, 2014.

Network vehicles language (NVL)

Tasks and resources

Eduardo R.B. Marques, Manuel Ribeiro, José Pinto, João Borges de Sousa and Francisco Martins, "NVL: a coordination language for unmanned vehicle networks", Intelligent Robotics and Multi-Agent Systems (IRMAS), Coimbra, April 2015.

NVL code

Coordinate parallel execution of tasks

NVL code

Rendezvous

Global specifications and projections

NVL field trials

Real time supervision

Runs

Multi-vehicle planning and execution

Lukas Chrpa, José Pinto, Manuel A. Ribeiro, Frederic Py, João Sousa, Kanna Rajan, **"On Mixed-Initiative Planning and Control for Autonomous Underwater Vehicles**", submitted to IROS 2015.

OPERATIONS

Large scale exercises Simultaneous ops in the Pacific, Atlantic and Adriatic Deployments from shore or from ship/submarine Over 100 days of ops per year

2014

- 1.600 Km underwater
 - 200 flights

Networked vehicle systems in action

Problem: Learn model of fish behavior from optimal adaptive sampling

REP Atlantic 2014 exercise July 2014

Organized by

- PO Navy
- Porto University
- Centre for Maritime Research and Experimentation

Participants

- University of Rome
- Certh
- Royal Institute of Technology
- Evologigs
- OceanScan

Areas

- Mine Warfare
- Harbour Protection
- Expeditionary Hidrography
- Search and Rescue
- Maritime Law Enforcement
- Environmental Monitoring

REP Atlantic 2014 Resources

NRP Pegaso (AUVs/UAVs)

NRV Alliance (AUVs, ASVs)

NRP Auriga (AUVs)

REP Atlantic 2014 Resources

AUV Folaga / CMRE

AUV Ocean explorer / CMRE

ASV Wave glider / CMRE

UAV X8 / LSTS

LAUV Noptilus class / LSTS

AUV Gavia / PO Navy

LAUV Xplore class / FEUP

REP Atlantic 14 Highlights

"Truly" autonomous UAV/AUV operations Coordinated observations - coastal fronts UAVs for "bent" LOS communications Mixed initiative control ASVs, AUVs, UAVs

REP Atlantic 14 Highlights

UAS controls (feedback) a submerged AUV with help of a Wave Glider

Coordinated air/ocean observations Split Sept 2014

REP Atlantic 2015 exercise July 2015

Organized by

- PO Navy
- Porto University
- Centre for Maritime Research and Experimentation
- University of Açores

Participants

- Naval Undersea Warfare Center
- NTNU
- Royal Institute of Technology
- NASA Ames
- OceanScan
- University of Plymouth

Areas

- Mine Warfare
- Harbour Protection
- Mapping termal vents
- Eco systems mapping
- JAUS enabled UAV/AUV interaction
- Tracking whales and charactering environmental parameters

REP Atlantic 2015 *Resources*

NRP Almirante Gago Coutinho

U of Açores R/V Aguas Vivas

FEUP Universidade do Porto Faculdade de Engenharia

LSTS and NORUT X8s

LSTS LAUVs

NUWC lver2s

REP Atlantic 2015 Op areas

REP Atlantic 2015 Remote operations

Web viz Integration with NASA MTS

REP Atlantic 2015 Highlights

Mapping marine ecosystems with AUVs and UAVs (hyperspectral)

REP Atlantic 2015 Highlights

- UxV communication with JAUS messaging standard to support hybrid platform network
 - Iver2 NUWC
 - X8 LSTS

REP Atlantic 2015 Highlights

 Tracking whales for environmental characterization with AUVs (CTD/HOLO/Fluorometer) and UAVs (IR/Hyperspectral)

Holo prototype developed by Alex S, University of Plymouth

CONCLUSIONS

- Systems of physical and computational entities with
 - coupled physical and computational dynamics
 - Compositional dynamic structure delivers novel system level properties that cannot be found in the constituent entities
 - Interdisciplinary research
 - Collaborative experimentation
 - Interoperability frameworks
 - Open software