

OCEANS & GLOBAL CLIMATE CHANGE: *challenges*

Professor Malcolm McCulloch *FAA FRS* ARC Laureate Fellow, The University of Western Australia

School of Earth and Environment ARC Centre of Excellence in Coral Reef Studies The University of Western Australia

www.coralcoe.org.au malcolm.mcculloch@uwa.edu.au

CLIMATE CHANGE: *rapidly increasing co*₂

Rapid increase in CO₂ due to burning of fossil fuels

- rate of increase in CO2 unprecedented
- fossil fuel burning the major driver

THE OCEANS & CLIMATE CHANGE

Present-day CO₂ GLOBAL WARMING: from the Last Ice-Age

Close link between rising CO₂ & global warming

Antarctic view

Last Deglaciation

- S. Hemisphere orbital forcing initiates warming of Antarctic & rise in CO2
- this drives changes in deep-ocean 'Atlantic' circulation, hiatus & further rise in CO2
- rising CO2 & N. Hemisphere orbital forcing causes global warming (Interglacial period)

GLOBAL WARMING: recent records

- The 2000 2010 decade is still the warmest yet recorded
- Hiαtus is part of `natural' variability but now superimposed upon anthropogenic warming
- Changing patterns of deep ocean circulation: ENSO, PDO implicated Kosaka et al. (2013), England et al.(2014), Huber & Knutti (2014)

Hiatus in global temperatures during the last decade: geologic record shows that this is not uncommon as the Earth

GLOBAL WARMING: recent records

Strong control of IPO (PDO) & ENSO (El Nino v's La Nina) phases on global temperatures

Hiatus likely a temporary respite due to dominance of La Nina phase (& cool PDO ?)

Strong control of La Nina phase on Western Australian marine heat-waves

Jens Zinke et al., (Nature Communications 2014

GLOBAL WARMING: coral bleaching

Example : 2011 La-Niña & coral bleaching along WA coast

<u>Coral bleaching:</u> loss of photosynthetic symbionts (zooxanthellae)

Feb-Mar 2011:

QUESTION:

can corals adapt/acclimatise (ie increase resilience) to the combined effects of <u>rapid</u> <u>warming</u> & ocean acidification (OA) ?

- eg response to return of even more intense '1998 El Nino' like conditions ? Hughes et al. (2003)

OCEAN ACIDIFICATION

Offshore Hawaii

OCEAN ACIDIFICATION: *in-situ* measured records

Instrumental Records:

- Hawaiian Ocean Time Series
 (HOTS)
- Offshore Bermuda (BATS)

Records are <u>limited</u> duration (~20 years) & regionally restricted

> Urgent need for long-term records

OCEAN ACIDIFICATION: coral response

- Why is the response of coral calcification to saturation state so variable (*high & low sensitivity*)?
 - better understanding of coral calcification processes needed
 - how does biogenic pH regulation work?

OCEAN ACIDIFICATION: deep-sea corals

PH up-regulation enables deep-sea (aragonite) corals to exist below the (aragonite) saturation horizon (ASH where Ω < 1)</p>

OCEAN ACIDIFICATION: pH up-regulation

biological regulation of internal pH in corals $\Delta pH = pH_{calcifying fluid} - pH_{seawater}$

OCEAN ACIDIFICATION: saturation state

- **\diamond** decreasing saturation state (Ω) of surface waters due to rising CO₂
- * partially countered during biogenic calcification by physiological up-regulation of calcifying fluid pH and hence (Ω_{cf})

 $\Omega = [Ca^{2+}][CO3^{2-}]/K_{sp}$

UNDERSTANDING CORAL CALCIFICATION RATES

Removing the confusion: pH up-regulation & calcification

Internal pH Regulation Abiotic Calcification: IpHRAC model (McCulloch et al. NCC, 2012)

Abiotic Calcification rate:

 $G = k_T (\Omega_{cf} - 1)^{N_T}$

 Ω_{cf} is calcification fluid $K_T \& N_T$ are temp (T) dependent

nature climate change	
C	

LETTERS

Coral resilience to ocean acidification and global warming through pH up-regulation

Aalcolm McCulloch^{1,2}*, Jim Falter^{1,2}, Julie Trotter¹ and Paolo Montagna^{3,4,5}

CHALLENGES: The Oceans & Climate Change

- 1. Urgent need to understand causes of the hiatus in global warming & better predict future warming
 - interactions between eg La Nina & cool IPO phases and
 - the role of deep ocean interactions on centennial, millennial timescales
- 2. Critical role of Antarctic wrt:
 - instability of grounded ice-sheets & rapid (catastrophic) rise in sea levels
 - deep-water formation & global impacts
- 3. Role of Pacific & Indian southern ocean deepocean circulation in modulating /controlling global climate change (not just N. Atlantic) ?
- 4. Response of marine biota (especially corals) to global warming and ocean acidification
 - inherent resilience versus finite ability to adapt/acclimatise to rapid change

OCEANS & GLOBAL CLIMATE CHANGE: *challenges*

Professor Malcolm McCulloch *FAA FRS* ARC Laureate Fellow, The University of Western Australia

School of Earth and Environment ARC Centre of Excellence in Coral Reef Studies The University of Western Australia

www.coralcoe.org.au malcolm.mcculloch@uwa.edu.au