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... With input from Craig Lee, Eric
D’Asaro, and several others.

1. Motivationsand Challenges
e Monitoring climate change
e Physicaland Biogeochemical systems
e Sampling in remote areas

2. Platforms and sensors
e Technology development (sensors and platforms)
* New ways to use robotic platforms

3. Summary, thoughts, questions



Big Challenges for Autonomous Platforms

Monitoring the Planet in the context of climate change

Development of biogeochemical sensors to study the integrated
physical and ecological system. Learning how to use platforms in

a broader context.
Understand the patchiness in time and space of primary production, carbon
cycle, etc.
How do patchy processes integrate to basin and global scales?

Using autonomous platforms to sample areas difficult or

impossible to access
Hurricanes, under ice, ice sheets, abyss, etc.




Why robotic platforms?

e Access- Regions far from human activity and transportation hubs.

e Risk- Unforgiving operating environment, extended developmentarc.
e Persistence-Resolve importanttimescales, transient events.

e Cost/Scalability- Sustain broad, long-term activity.

e Adaptability/Flexibility.

— Needs evolve with changing environment and understanding.
— Meet disparate stakeholder needs: climate to tactical.

How do we build a sustainable observing capability that resolves a broad range

of temporal and spatial scales (climate to process) and meets the needs of
basic research, policy makers and stakeholders?




Global Observations

Key Attributes
e Access remote locations.

Arctic Observing System

1L 4 Liquid freshwater (upper 500m, reference salinity 35)

e Distributed & Persistent: low cost, . _ 25
light logistics, scales well, sustainable.

e Requires acoustic infrastructure for
working under ice.
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Persistence — Glider Observations of Boundary currents
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Physical Controls of Biology / Biogeochemistry

Blooms and patchiness characterize primary productivity and plankton communities

We need to measure on the small temporal and spatial scales of these fields!
We need to resolve the complexity of biological communities

MODIS SST MODIS ChIorophyII

Klein and Lapeyre

Inherently interdisciplinary- many scientists and technologists with
diverse skills required to drive advances in complex problems like these.

Patch dynamics to climate- Must understand the details of these small
scale processes to predict system response to climate variability.




Physical Controls of Biology / Biogeochemistry

Eddy boundaries, mesoscale fronts show submesoscale structures 100 m — 10 km.
Fronts, filaments, eddies. Elevated chlorophyll.

Nutrient supply — mixing, advection

Light — stratification, vertical exchange

Export (flushing, sinking)

Encounter rates

Community structure

a) Transport at a submesoscale front
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Mixed-layer

Euphotic layer



Physical Controls of Biology / Biogeochemistry

Ship-based and ship-supported sampling

Extensive biological and chemical
measurements, calibration data,
scale check.

-

Composition of falling particles Limited footprint, expensive.



Patch-Scale Dynamics in the Subpolar North Atlantic
Spring Bloom — NABO8

CraigLee, Eric D’Asaro, Mary Jane Perry, et al.
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1) Persistence — floats & gliders provide The NABOS Story
longer term observations thanships—sample . : :
amelbut e nEnievens [losm eveluiion Phytoplankton growth highest in regions of strong
_ P stratification (increased light exposure).
and demise)

Instabilities of the ML lateral density gradient initiate

2) Productivity measurements — restratification, accelerates bloomonset by 20-30 days

Phytoplankton, Net Community (than would occur with surface warming alone).
Community type (diatoms/PN) also patchy, but can be

S{pelng SEeIEdEeN mapped mapped with Chl-F/bb ratio
3) Calibrated optical proxies — Export efficiency depends on community (12% vs 2%).
Allow projection of expensive ship Need better grazing estimates to determine patch

measurements to larger spatial scales dynamics.




Sampling in Difficult Environments

Remotely operated boat with ADCP and CTD winch
Schroyer, Sutherland, Nash (Oregon State)

Navigation
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Sampling in Difficult Environments

Deployment of Lagrangian float from C-130 during ITOP 2010
79 floats and drifters air-deployed - b
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Sampling during ITOP 2010 =~ ~
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Sampling in Difficult Environments
Extended Operations Under Arctic Ice Craig Lee, et al.

Davis Strait Array Samplein full ice cover, marginal ice zone, ice-
ocean interface

 Enhanced endurance, reliability

e Compass calibration/check procedures for
high-latitudes ops

g e Real-timeacousticnavigation.
Acoustically-navigated Gliders

* |ce detection-ice climatology, temperature,

(Not to Scale) - Repeated sections .
- Resolves deformation scale (5 km). altimeter.
- Samples at ice-oceaninterface. e Enhanced autonomy.

- T, S, dissolved oxygen. ) ) )
e Acousticcommunication for data transfer
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Sampling in Difficult Environments
Extended Operations Under Arctic Ice Craig Lee, et al.
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Seaglider is the only long-endurance AUV capable of multi-month operations under ice.




Collaboration Example: Autonomous Study of

the Marginal Ice Zone 2014 (APL, WHOI, NPS, BAS, ...)
Understand

* Processes that govern
MIZ evolution.
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ALASKA

Seagliders

Profiling
floats

ooeing

MIZ Approach

Follow retreating ice edge, continuous
sampling across MIZ, from open water to
ice-covered interior.

Mobile, drifting and ice-based platforms.

New drifting and mobile (Waveglider-
mounted) navigations sources (Freitag).
Broadband, encode source position.

N

SWIFT floats

Source

Wavegliders



Deployments at Site C4

March 2014
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Time Scales
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Platform developments

Saildrone LLC
(MSTF)

Z-boat
(OceanScience)

i T e 4 L

Waveglider
Use renewable energy: (LiquidRobotic)

Wind, wave, solar



Platform developments

Tethys (MBARI) | (e _
Long Range AUV [ ; my === | o

1000 km, 2 weeks
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Sensor developments

Physics is ‘easy’ Biology and Biochemistry is hard.
* nutrients
- Turbulence microstructure from gliders e Mesozooplankton

e carbon ‘mastervariables’ (DIC, pCO2, pH).
Rockland, APL/UW, \Pw gl 1 5
OSU, WHOQI, S\ s

Gulper

_ (MBARI)
- Velocity measurements:

Differential pressure sensors — pitot tubes
(Moum, OSU)

“Swarms” of AUEs

- Surfaceturbulence (Jaffe, Franks, SIO)

SWIFTs (Thomson)




Summary

e Autonomous vehicles can successfully sample across the broad
range of space and time scales needed to resolve physical and
biogeochemical processes.

e Creative, multi-platform approaches offer great power.

 Technology development directly tied to science interests.

= |dentify important science questions where availability of observations
impedes understanding — develop new observing technologies and
approaches.

e (Calibration is critical

= Need insitu and cross-calibration of biogeochemical sensors. Still need
ships: lab calibration is insufficient.

= Empirical vs. mechanistic proxy relationships.

= Direct calibrations of limited number of reference sensors on mobile
autonomous platforms, and propagate these via cross-calibration ‘visits’
and engineered or random encounters.



A few thoughts and questions...

Technology development: tied to science interests, require integrated
teams of scientists and engineers.

How to encourage and promote risk and novel ideas?

Interdisciplinary problems: scientists and technologists with diverse
skills required to drive advances in complex problems.

How to encourage and promote cross-discipline collaborations?

Availability of ‘proven’ technology: many new nice, expensive,
platforms

How to provide access for use, and for sensor development & integration?

Learning and teaching integrated science: no single instrument
resolves everything.

How do we use best coordinate multi-platform programs, and how to synthesize
data from autonomous platform, remote sensing, ship assets, etc.?

How to learn/teach how to use the technology?






Autonomous Biogeochemical Network- Pilot Projects

Key Elements:
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Mobile Autonomous Platforms in a Biogeochemical Network

Platforms, sensors & approaches will evolve
System undergoing change
Understanding will advance .- ... L0
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3308 Active Floats  ~71800 km range circles = “6-month operating scope of today’s gliders May 2011
Can loiter and drift to extend endurance, time on station

Futuremobile platforms: Tethys LR AUV (1-2 kts, 3000+ km, extensive payload)
ER and Deep gliders
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