

THE ABUNDANCE AND DISTRIBUTION OF NANOPLASTICS IN THE CALIFORNIA CURRENT AND THE NORTH PACIFIC SUBTROPICAL GYRE, IMAGED WITH A NOVEL METHOD

SCHMIDT Jennifer A. Brandon, Alexandra Freibott, Andrew G. Taylor, Mark D. Ohman **NSTITUTE**

Introduction

Marine debris has been a concern for decades, and recent research has shown that the vast majority of marine debris is microplastic (<5mm). However almost all of these studies have used nets to measure marine debris, hence plastics smaller than the net mesh (often 333 µm) have most likely been undersampled. Plastics smaller than 333 µm are termed nanoplastic in this study.

Goldstein et al. (2013) found that 90% of their sampled plastic was smaller than 1 cm², but they undersampled plastic <333 µm.

Large marine debris follows gyre circulation patterns and accumulates most heavily in the center of gyres. Marine debris is also abundant near areas of coastal effluent. Because nanoplastic is so undersampled, it is not known whether it follows the same spatial patterns.

Goldstein et al. 2012, 505 and $333 \mu m$ nets. Max abundance: 10/m³

Max abundance: 0.4/m

Juestions

- Can we identify nanoplastics ($<333 \mu m$) for a more accurate abundance estimate of total plastic debris? Do spatial trends in nanoplastic abundance mirror the
- trends in larger plastics?

Conclusions

- Almost all small fibers and fragments were $<333 \mu m$, therefore missed with other methods
- Nanoplastic abundances are ~5 orders of magnitude greater than previously published estimates of microplastics
- There was no detectable spatial heterogeneity in nanoplastics, but the plankton:plastic ratio of the CCE is higher than the NPSG

Acknowledgments: I would like to thank Schmidt Ocean Institute, NSF CCE LTER, UC Ship Funds, and the SIO Ships Office for their generosity in making this project possible. I'd like to thank the captains and crews of the R/V Falkor, R/V New Horizon, and R/V Sproul for all their help. This project would not have been possible without the expertise of the Landry Lab or the use of their equipment. I'd also like to thank my PhD committee for their guidance throughout the methods development process

Epifluorescent microscopy successfully differentiated plastic from non-plastic particles. All 3 types of plastic (short fibers, fragments, and long fibers(>200 μ m)) had high abundances. Abundances averaged 10³/L, whereas previous published microplastic studies are 0.0004-.01/L, a~5 orders of magnitude difference. Fluorescent particles (the majority of consumer plastics) dominated compared to more industrial, non-fluorescent plastics (nylons, polyesters). **Plastic Dimensions**

At-Sea Collection

Surface seawater samples were taken by metal bucket on 3 cruises:

(1) R/V *Falkor*, a transect from Seattle to Honolulu,

sampling every 12 hours

(2,3) SKrillEx I and II sampled the nearshore coastal water of the California Current

Surface water was filtered in an all-glass system onto 5 µm polycarbonate filters. Filters were then wrapped in tin foil and frozen at -80°C until analysis.

Cruise tracks

R/V *Falkor* cruise track over satellite SST, 8 km resolution. White lines delineate study regions

Glass filtering setup

Results

Falkor NPSG CCE Sampling Station

NPSG Plankton

Organism	Abundance/L	Plankton:Plastic Ratio			
Autotrophs ^A	1.2×10^{6}	403:1			
Heterotrophic Eukaryotes ^A	1.1x10 ⁶	370:1			
Autos and Heteros ^A	2.3x10 ⁶	773:1			

^APasulka et al. 2013, Depth integrated 0-50m, divided by 50, for the month of October at Station ALOHA

There was no spatial heterogeneity in nanoplastic abundance among the three study regions (NPSG vs. TR vs. CCE) on the Falkor cruise (top left). The plankton:plastic ratio of CCE is higher than NPSG.

Methods

Epifluorescence Microscopy

Samples were analyzed by epifluorescence microscopy, at 4 different excitation/emission combinations. Autofluorescent plastic ($\geq 5\mu m$) could be clearly differentiated from the autofluorescence of living cells by wavelength-specific fluorescence signatures.

Intensity of Fluorescence of Standard Plastics					
elength	340-380 nm	450-490 nm	465-495 nm	536-556 nm	
elength	435-485 nm	>515 nm	635-685 nm	550-610 nm	
	++	++++	-	++++	
	++	+++	-	++	
	++++	++++	++++	++++	
	+++	++++	-	++	
	++	++	-	+	
	+++	++++	-	++	
	+	++	-	-	
	+++	+++	-	+	
r	-	-	-	-	
	+++	++++	-	+	
- = no fluorescence					

+ = very low fluorescence ++++ = high fluorescence

I quantified fluorescent (mainly PE,PS, and PP) and non-fluorescent (mainly polyesters, nylons) plastics and differentiated from non-plastics on the slide images. Milli-Q water under the same filtration protocol revealed that the baseline contamination of nanoplastics and fibers was very low.

CCE DATAZOO, averaged surface data from multiple cruises Ohman et al. 2012, Average data integrated over top 100m, divided by 100, without rontal values included

2.5x10⁻²

2.2x10⁻⁶:1

(<200µm)^C