Current Status

Current expedition: Costa Rican Deep Sea Connections

The Pacific margin of Costa Rica is an area of seamount subduction where methane seeps, thermal anomalies, and non-subducting seamounts intersect and presumably interact. Despite several research expeditions to this region, scientists still know very little about how these types of ecosystems may be connected to communities in the rest of the oceans including the soft sediment background communities and deep-sea corals. To characterize these interactions, Dr. Erik Cordes, from Temple University, and his team of interdisciplinary researchers will use a framework coupling benthic sampling, near-bottom chemical sensor and photographic profiling, along with vertical characterizations through the water column from deep to shallow.

The 22-day expedition will visit multiple low-oxygen seep areas along the margin, and seamount sites out to the protected Isla del Coco National Park. The team will look to see how sites differ by depth, oxygen dynamics, pH, seep intensity, and the available substrate. At each site, a suite of sensors, instruments, and statistical methods will be used to combine biological and oceanographic surveys, transplant experiments, and vertical water column characterizations that will provide a full biogeochemical understanding of the area.

ROV SuBastian will explore the deep habitat collecting high resolution ocean chemistry measurements while performing video transects and obtaining sediment, rock, and animal samples. Along with the ROV, a custom ship-towed autonomous vehicle called “The Wire Flyer,” will get high resolution ocean sensing data vertically through the water column. Additionally, DNA and RNA sequencing will be used to compare animal and microbial communities from different habitats and substrates, and quantitative methods will be used to assess microbial activity.

This expedition will likely reveal new habitats, species, and possibly even new biogeochemical pathways. The chemical analyses that will be completed will help to improve our understanding of carbon cycling in the deep ocean, which has important implications not just for the surrounding deep ocean environments, but also for global climate cycling.

To find out about more about this expedition, visit the research cruise’s webpage.

Latest Blog